Electric Charges And Fields

Electric charge

- It is the additional property of protons and electrons which gives rise to electric force between them.
- There are two kinds of charges positive charge and negative charge.

Properties of electric charge

- Electric charge is a scalar quantity.
- Like charges repel each other whereas unlike charges attract each other.

Conductors

 The substances which allow electricity to pass through them easily are called conductors for example metals are good conductors of electricity.

Insulators

• The substances which do not allow electricity to pass through them easily are called insulators for example the non-metals such as porcelain, wood, nylon, etc. are examples of insulator.

Gold-leaf electroscope

- A simple apparatus used to detect charge on a body is the gold-leaf electroscope.
- It can only measure the magnitude of the charge on a body cannot mesure its polarity.

Charging by induction

- This is a process of charging an uncharged body with the help of a charged body without any actual contact.
- A charge of opposite sign develops on uncharged body when a charged body is braught near to the uncharged body.
- **Charging by induction:** This is a process of charging an uncharged body with the help of a charged body without any actual contact.
- A charge of opposite sign develops on uncharged body.

Basic Properties of Electric Charges

- The total electric charge on an object is equal to the algebraic sum of all the electric charges distributed on the different parts of the object
- The total charge of an isolated system remains constant with time.
- All observable charges are always some integral multiple of elementary charge, e (= \pm 1.6 × 10^{-19} C)

Coulomb's Law

- Two point charges attract or repel each other with a force which is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance between them.
- $F=Kq1q2r2,K=14\pi\epsilon 0=9\times 109 \text{ Nm2C-2}$

Principle of Superposition

- It is based on the property that the forces with which two charges attract or repel each other are not affected by the presence of a third (or more) additional charge(s).
- The total force on a given charge due to number of charges is equal to the vector sum of the individual forces exerted on the given charge by all the other charges.

Electric Field

• It is the space around a charge, in which any other charge experiences an electrostatic force.

Electric Field Intensity

- The electric field intensity at a point due to a source charge is defined as the force
 experienced per unit positive test charge placed at that point without disturbing the source
 charge.
- Electric field due to a point charge at distance r from it is $E = q4\pi\epsilon 0r2$
- Electric field due to a number of charges is found by adding the individual electric fields vectorially.

Electric Field Lines

- An electric line of force is the path along which a unit positive charge would move, if it is free to do so.
- Properties of electric field lines
- They are continuous curves without any breaks
- They cannot cross each other.
- They cannot form closed loops.

Continuous Charge Distribution

• **Linear charge density** – When charge is distributed along a line then charge density is given by λ .

$$\lambda = \frac{q}{L}$$

• Surface charge density-When charge is distributed along a surface, the charge density is given by σ .

$$\sigma = \frac{q}{A}$$

• Volume charge density-When charge is distributed along a volume, the charge density is given by δ .

$$\delta = \frac{q}{V}$$

Electric Dipole

• System of two equal and opposite charges separated by a certain small distance.

Electric Dipole Moment

• It is a vector quantity, with magnitude equal to the product of either of the charges and the length of the electric dipole and direction from the negative charge to the positive charge. $\vec{p} = q(2\vec{a})$

Electric Field on Axial Line of an Electric Dipole

Electric Field for Points on the Equatorial Plane

$$E=→- p4πε0r3$$

Dipole in a Uniform External Field

In a uniform electric field E, a dipole experiences a torque t, due to two equal and unlike parallel forces acting on dipole

 τ = Force × Perpendicular distance between the two forces τ = $pE \sin\theta$ $\therefore \vec{\tau} = \vec{p} \times \vec{E}$

Electric flux

- It is the total number of electric field lines of force crossing the unit surface area in a direction normal to the surface.
- The flux Φ of an electric field E, through a small area element ds is given $\phi = \int_{s} \vec{E} \cdot \vec{ds} = \int_{s} \vec{E}_{n} ds$ by

Gauss's law

• It states that the total electric flux through a closed surface enclosing a charge q is equal to $\frac{1}{\epsilon_0}$ times the magnitude of the charge enclosed.

$$\phi = \frac{q}{\varepsilon_0}$$

$$\phi = \oint \vec{E} \cdot \vec{ds}$$

Applications of Gauss's Law

- Electric field intensity due to an infinitely long straight wire of linear charge density λ at a point which is at a perpendicular distance r from the wire is given by $\lambda 2\pi\epsilon 0 r$ n^, where n^ is the radial unit vector in the plane normal to the wire passing
- Electric field intensity due to a uniformly charged infinite plane sheet of surface charge density s is given by $\sigma 2\epsilon 0n^{\wedge}$, where n^{\wedge} is a unit vector normal to the plane, acting outward on either side.
- Electric field intensity due to a total charge q distributed along its surface is given by $q4\pi\epsilon r2$ ($r\geq R$), 0 (r< R)

Here, r is the distance of the point from the centre of the shell and R is the radius of the shell.

- Mechanical force per unit area of a charged conductor, f=12εΕ2.
- Energy density per unit volume of a charged conductor, dudv=12εΕ2.